EFFECT OF RADIATION ON BOUNDARY-LAYER
FILM BOILING

M. V. Krishnameti and A. Ramakhandran UDC 536.423.1

Heat trangfer in film boiling in a forced-convection boundary-layer flow is examined. The
interaction hetween radiation and convection is taken into account by the inclusion of radia-
tion terms in the energy conservation equation. It is found that radiation increases the
vapor temperature and the heat conductiononthe vapor-liquid interface, whereas heat con~
duction on the wall is reduced.

Introduction

Film boiling in a forced-convection boundary-layer flow has been investigated by Cess and Sparrow
[1], and also by Ito and Nishikawa [2]. In these investigations the radiation of the vapor was neglected.
Since radiation is proportional to £I?, it may be significant in cases where either the emissivity gy, or the
vapor temperature is relatively high. In many engineering applications film boiling takes place at a tem-
perature at which the radiation of the vapor cannot he neglected. The aim of the present work was fo in-
vestigate film boiling in a forced-convection boundary-layer flow when energy transfer is effected by both
convection and radiation,

The physical model chosen for study is the laminar boundary layer over a flat plate (Fig. 1). A stream
of liguid impinges on the plate, which has temperature Ty. The liquid is agsumed to be saturated. Under
the influence of a sufficiently high surface temperature film boiling occurs, i.e., liguid and vapor boundary
layers are present. Since the temperatures of the plates and vapor are relatively high energy will betrans-
ferred by both radiation and convection. The radiation alters the vapor temperature distribution and, hence,
affects the convective heat transfer. This change in convective heat transfer in turn affects the tempera-
ture profile and, hence, alters the radiation. Henece, it is obvious that the problem under investigation
necessitates a consideration of the combined effect of radiation and convection on the heat transfer.
Analysis

In our investigation we made the following assumptions:

a) the properties of the vapor are constant;

b) the vapor is a nonscattering diffuse absorber and radiator;
c) the plate surface is gray;

d) the product of the vapor absorption coefficient « and the thickness of the vapor film is much less
than unity, i.e., a0 < 1;

e) the resultant transfer in the x direction within the vapor is negligibly small.

Assumption a) has been made before in many boundary-layer heat-transfer calculations and it has
been shown that this assumption is perfectly satisfactory, at least for qualitative results.

If the vapor contains no suspended particles or liquid drops the only type of scattering will be Rayleigh
scattering, which is inversely proportional to the fourth power of the wavelength. Generally speaking, the
heat radiation wavelengths are so large that such scattering is negligible. On the other hand, scattering
may be caused by suspended particles or drops. This type of scattering does not depend on the wavelength
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and will be considerable. Thus, assumption b), i.e., that the vapor
‘ is nonscattering, implies the absence of solid particles or liquid
e (Y drops. Asgsumption d) implies an optically thin approximation. This
- {/r/“ T tf._
x 18 u
L3

assumption ig valid in most boundary-layer problems. The next

step is to establish the condition in which radiative transfer in the

x direction is negligibly small (assumption e). This necessitates,

Fig. 1. Physical model and coor- firstly, the formulation of the energy equation for this boundary-
dinate system. layer problem

or ar - -
Lol — +o—)=—divg,—divg,

P 50 905, g —divy M
where the stroke on top denotes a vector quantity and o = —k grad T. It is well known that if the Peclet
number (Pe = Uyex /) is sufficiently large, the conductivity in the x direction will be negligibly amall, so
that divg, = 8qcy/ dy, where the subsecripts x and y denote the corresponding vector components. Equation
{1} can then be written in the form

aT aT I
cp {u — 0 —| =k, — —divg,. 2}
S Py ( ax + ay ) T ag2 q
The criterion for neglect of radiation can now be determined. This is done by investigating the condi~
tions in which radiation in the direction of the flow becomes negligibly small in comparison with convection,
i.e.,

oT _dq
Cp U — > L%, (3)
O Py ax >> Ox
The order of magnitude of udT /9x is determined in the usual way
ua_r": ~U. Ty —Taat . 4)
ox x

For the evaluation of 9qyx/0x it is essential to note [3] that the optically thick approximation will take into
account the radiative heat transfer when this approximation is applied to the case of zero optical thickness.
Thus, inthe given situation the corresponding criterion will be introduced hy using the optically thick ap-
proximation. The order of magnitude of 8qyy /8x can then be evaluated from the Rosseland approximation
for a radiative heat flux

4 de
T % &
where e is the emissivity of a blackbody, e = oT*.
Thus,
_ 166T% T
s = 3a  dx
i.e.,
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%2 Radiation of Vapor. Referring to [4] we can express the mono-
chromatic radiation flux in the form

17 9
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5 7
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G = 28,8, Bs {0} -+ {1 —e,) E5(v,) i; &, (%, n) Ex(n) dvy,
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where 73 = | a,dy is the monochromatic optical thickness; Ey(t)
o

Fig. 6. Graphs of functions

Fye) and Fings) /[-9mo)]: 1)
ratio {pp) =0.01; 2) 0.1,

i
= } M %exp (—t /wydp is an exponential integral. Corresponding tothis,
Fi]

T

o, o '
- 6% == 28,0, Ey (1) + 4 (1 —8,) Ey (1)) g e, (x, 1) By (1)) dr,,
A §
T§?b
+2 j &, (%, ) Ey (1, — 1)) df — de, (x1,). 8)

2

Having e) = e, for ) = 7, it can be shown that when 745, < 1 equation (8) for 7, < 74 (i.e., in the bound-
ary layer) reduces to the equation

A
—_— i'}.' = {8, (ew}\, - eoo?y) + 4 (ew?v . 67\4)' (9)
dty,

Thus, we have

= —ay [Zey, (€ — 2n) + 4 (€wn —&,)]- (10}
9y

1339



40 ‘I’ T r -
“r % N - a(1)

i 30
98f —F- % N\

7 N
Qﬁ/ / ! C “

5 & )
12 10

0'4/ 13 N 09 44 ;

0 | 96 ——
10 2 14 16 18 rl(,g T 2 N 7
Fig. 7. G;'aph of function I Fig. 8. Graph of function G(Y) (for-
6 mula (41)).

= Of Hy () dns. (0

Boundary Layer Equation

The main differential equations for the present problem can be written in the form:

continuity equation

oL ® (11)
0x Oy
momentum equation
y o L0 S (12)
) dy oy?
energy equation
T5h
" oT ary . o7 (
Ouon | ¥ 5 T oy ) T P + j 2ap &y, (€un, —€an) + 2 (s, — &) 1dA. (13)
0

For the liquid layer we have only the equations of mass and momentum conservation, since the liquid
temperature in the present investigation is assumed to be constant:

continuity equation

ou dv
o a0 (14)
momentum equation
2
WP 2, O (15)
0x dy oy?

Boundary Conditions

To complete the statement of the problem we formulate the boundary conditions. On the plate surface,
owing to the adherence of the viscous liquid,the two velocity components will be zero. In addition, the vapor
directly adhering to the wall will have temperature Ty,. Onthe liquid—vapor interface (y = d) the vapor will
have temperature Tgat. In addition, on the interface the following conditions will be satisfied:

1) equality of vapor and liquid velocities;
2) continuity of shear stress;
3) conservation of mass across interface.

The velocity at points in the free stream far from the interface will be equal to the velocity of the
impinging flow: i.e., for y = 0 (vapor phase)
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for y = 6 (liquid —vapor interface)
(17)

for y = = (free stream)

v U,_. (16a)

These initial and boundary conditions in conjunction with the congervation equations constitute the
complete statement of the problem. '

We now convert the main equations to more convenient forms and find their solutions.

Gray Vapor

We congsider the preceding equations for the case of a gray vapor, i.e., a vapor for which the absorp-
tion coefficient A is independent of the wavelength (@) = ¢}). On this assumption equation (13) has the form

ar ar ) k GZT 20a 4 4 4
u +v =2 ew Lo — Tat) + 2 (Teat—T)]. (18
(7)6 ay puc,,v ayl va[;D b w( w m) { ( sat )] )
The continuity equation can be satisfied by the introduction of a stream function ¢
u::—(}imnd vr—-—&.
oy ox -
We infroduce the dimensionless variables:
Vapor layer
Y Vo 1 ¥y
e y 1 {1}y) = e
o= 5 | vir () T non
20aT 3 x
— w [ 2 _—
Y= Tw;ll sats g = PDC;:,, Ua

liquid layer
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TABLE 2. Temperature Gradients
(vatio [(op)y /ow)L)'/% = 0.01, Pr

TABLE 1. Values of Fmvé) =1)
Ratio { py) ]
g oy | — @1 (0) | —@ (ny5)] O, () [0} (nyg)
0,001 4.0t 0,1
1,0 1,0310 | 1,045 | 0,6945 1,0 | 1,106 | 1,797 | 1,7262 | 1,4409
1,20 | 1,2658 | 1,2598 | 1,2049 12 ’ 0,9505 | 0,5874 | 1,9689 | 1,5212
1,4 | 1.,5168 | 1.5115 | 1.4631 1,410,849 | 0,4303 | 2,170 | 1.5347
1,6 | 1,7868 | 1,7824 | 1,7415 1,6 1 0,7803. | 0,3089 | 2,3344 | 1,4955
1,8 | 2,078t | 2.0745 | 2.0418 1,8 l 0,7329 | 0,2146 | 2,4625 | 1,4200
2,0 | 2,3920 | 2,3893 | 2,3650 2,0 | 0,7010 | ©,1424 | 2,6610 | 1,3240
r =
H Uao \pL
W=V = [t = = (19b)
, 2 v x Y Vv Uk
The velocity components in the vapor layer then have the form
4 | —
— l v, U 5 T (203'
= Fmand U= - ] = O —F, )
and the velocity components in the liquid layer are
Uof 1 / EX ~
U= and U == ~g— L= (i f =) (20Db)
2 2 1 x t
Using the introduced variables in the momentum equations (12) and (15) we obtain
F" 4 FF =0, 21)
P+ ff=0. (22)

Equations (21) and (22) are Blasius-type equationg for dynamic problems in vapor and liquid, respec-
tively.

The initial and boundary conditions can also be expressed in terms of the new variables. Firstly, it
should be noted that the value of 7y, on the interface is denoted by Nyge The value of 17, can also be denoted
by 71,6 Since, however, the actual value of 717, is not contained in the main equations — neither the differ-
ential equation {22) nor the boundary conditions — we can, without loss of generality, assume 07, = 0 at the
liquid—vapor interface. Then, using (19}, we write condition {16) and (17) in the form:

for ny = 0 (plate surface) F = F' =0,
for ny =nyg (interface) f; = [(pu)y /o) LIV *F;,

fi=Fr,
. { (oW, j}mﬂ" (23)
(ow),
for = {free stream) f* — 2.
We will seek the golution of the energy equation (18) in the form
@453w¢%+W«D@MmH+WL~UwAm%t@w—n@ﬂmng+“. (24)

Substituting (24) and (20) in equation (18) and collecting terms with the same powers of £, we obtain the
ugual differential equations for ©;, ®;, and 8,

3%76%4~F65::0, (25)
Loy Lre—-Lre ——Hm), (26)
4Pr 4 2
Logs L pe L e, -, @7)
4Pr 1 2

where
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TABLE 3. Pr=1; [(op)y /(o)) 72 = 1.01

b Ty Tsat 8, (0) — 8 () !
1,0 1,3 —0,4331 0,7276 0,1492
1,5 —{0,3277 0,8140 0,2115
2,0 —0,1399 0,9577 0,3189
3.0 0,057 1,093 0,4262
4,0 0,1531 1,152 0,4761
1.2 1,3 --0,4925 0,8448 0,2029
1,5 —{,3735 0,9306 08,2766
2,0 —0,1616 1,073 0,4037
3.0 -+0,0807 1,2053 0,5303
4,0 0,1689 1,2626 0,5889
1,4 1,3 —0,5402 0,9399 0,2700
1,5 —0,4105 1,02 0,3546
2,0 ~Q,1796 1,1518 0,5000
3,0 40,062 1,274 0,6444
4,0 0,1802 1,3255 0,7112
1,6 1,3 —0,5763 1,0072 90,3531
1,5 —0,4386 1,08 0,4475
2,0 —0,1935 1,194 0,6096
3,0 40,063 1,2097 0,7701
4.0 0,1882 1,3444 0,8441
1,8 1,3 —0,6016 1,043 0,4540
1,5 ~—(,4582 1,1027 0,5571
2,0 —0,2032 1,2004 0,7337
3,0 +0,064 1,289 0,0081
4.0 0,1940 1,3262 0,9882
2,0 1,3 —0,6175 1,045 0,5736
1,5 ~0,4704 1,095 0,6840
2,0 ~—{3,2089 1,1757 0,8728
3,0 -+0,0649 1,251 1,0601
4,0 0,1980 1,278} 1,1345
1 , .
Ho () + — 11+ v — 2{1 -+ (v — DO} (28)
Y

The boundary conditions derived from (16), (17), and (24) have the form
29)
85 (Mys) = 0, ©; (y5) = 0, By (M) = 0

As wag to be expected {1, 2], the function @;(n,) is the temi)ei:'afure distribution for the case of negli~
gible radiation interaction (¢ =0) [1, 2], although the term in the brackets in equation (24) denotes a firgt-
order radiation effect on the temperature profile within the vapor.

Mys and Physical Properties

The dimensionless thickness 7yg of the vapor film can be related to the known physical properties of
the system by writing the energy balance equation on the interface

iy _k(ﬁl) +R. (30)
9 /s

Equation (30) shows that the sum of the local heat conduction and the resultant radiation R on the interface
is balanced by the heat of vaporization. In the new variables,equation {30) is written in the form

L S W P S a1
Y -— 1 ;’Lfgpi' v—@y(nvév E) . (ﬂvé) Py V';(;h}'g Um ' ( )
where

8" (s B=I(y — 1) 8 (ne)l + (v — D10 (o) + (e, — 1) B2 () EF ©2)

Since cpAT/ hngr is independent of x, it follows from this that the value of the right side of equation (31)
will also be independent of x. Hence, it can be determined for x = 1., The resultant radiation flux can be
found from the following equation:

“né P
R = e,0Th: (v — 1) +20aT%: 5 Q4,2 ‘/ %ﬁ;, (33)

)
0
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Since the radiative transfer between the plate and interface makes the main contribution to R, then we can,
for convenience, replace ® in equation (33) by [1 + (v—1)®,(ny)] without introducing any appreciable error.
Hence, equation (33) can be rewritten as

n

. "
R —= ,0T%: (vt — 1) + 20aT% (v* — 1) l/ fij [mﬁ — g Hy(n,) dnv]. (34)
[}
Equation (32) can be written in the form
cpAT —1
“L) [F (nys) — 2C, — €, — 2C3], (35)

hfgpr i“‘(H) (M8:8))

where
8" (s &) = (¥ — 1) B0 (n,6) + (v — 1) 181 (Mye) + (e, — DO () & + .. .5

(Y — )T sat €,,0 l/
C . w
! pvhfg U, Vy

4 ’DThd ?
Cos (v = gt [mo“— S Ho (1) dnv]; (36)
53 .

0

)
ud
Cpu Tat -

C - ZE . nbb’ [ = \ HO (nu) dnu'
fg o
0
In the deduction of equation (35) it was assumed that the vapor—1liquid interface behaves like a blackbody.
However, for a nonblack vapor —liquid interface we have

yi—1 oTa y/ L

Ty ek VT

c, - (36a)

€y g

where &y and £, are the emissivities of the vapor and vapor-- liquid interface, respectively. For negli-
gibly small radiation of the interface and vapor (a = &y = €1, = 0) equation (35) reduces to

C},AT |: F (Tlué) ]
= 7 . (36b)
h‘fg Pr - 60 (T] 1)6) B

Equation (35) expresses the relation between the physical properties and thickness 7y§ of the vapor
film, since F(ys) and @'y, £4) are functions of 7,5. Hence, the vapor film thickness nyg can be found
for specified values of the physical properties.

Results of Heat Transfer Investigation

For evaluation of the heat transfer from the plate surface, itis convenient to consider separately the
radiative heat transfer and the conductive heat transfer. The radiation from the plate consists of two com-
ponents — radiation from the wall to the liquid and radiation from the wall to the vapor:

q =4, + Goors (37)

where

AT UOQ ’
e o’ (0);
Ge & (y—1 2 L © (38)

0’ (0) = (y— 1) 8 (0) + (v* — 1) [} (0)+(8 — 1), (O &

To determine the total radiative heat transfer from the plate surface we consider equation (7) when
Th=10

o

Gur = 2 | [(€un— ur) =2 | (6, — ) Ex () ] .

0 0

As before, within the limits of the first approximation adopted in the present analysis we cah put e} = €w),
for 73 = 755, whereas for 7 < T5) we have Ey(7;) = 1. Thus, the equation written above will take the
form
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Guor = 44 5 [(wa — o) — 2 g (en— ) dTh} d. (39)
0 0
For a gray vapor the absorption coefficient is independent of wavelength {a) = @) and equation (39) reduces
to the following:

Quor = &y (ew - ew) - 28w S‘ (e - ew) dr. (40)

0

When (24) is substituted in this equation and terms of the order ;£ are neglected we obtain

S [ DU 1Y SR “41)
gw(ew_‘em)

where

o5

2
G =y | W+ + D6 —1dng;

° 42)
nvé

1]

and ¢ is a measure of the optical thickness of the boundary layer, given by

ax
= e Ty, {43)
¢ ¥ Re °
Hence, the total heat transfer on the wall is given by the expression
P — .6 ‘
NI
q — m__g_ {’Y~ 1) VU)C O (0) + bwGTsat(Y 1) {1 ; ﬁ*e— q]v() j HO (Tlv} dnv . (44)
Q

It should be noted that if the vapor neither absorbs nor emits, the resultant radiation from the plate
is simply

Qor == 8w0T§af ('Y{l - I) (4-'5)

Hence, the second term in the brackets on the right side of equation (44) is a first-order correction, due
to the presence of vapor, to the expression written above, It should be noted that this first~order correc-
tion depends only on the optical thickness { and the temperature ratio v and is independent of the plate
emissivity 5y and the expansion parameter £.

If we define the Nusselt number as

oT
Nu = — % :mmi(——), (46)
kv (Tw - Tsa'l) AT 6_1/ w

then equation (38) can be converted, for convenience, to the form

Nu .
w—-"—:'_.:———@ OTH s 10, +1 47
VR 0 (0) (v: £ & 47

where

A, e) === 010 + € —De:t) @)

The first term on the right side of equation (47) is the convective heat transfer in the absence of radiation,
while the second term is the effect of radiation in a first approximation.

Method of Solution

The velocity and temperature profiles are given by equations (21)-(29). These equations were solved
numerieally on a SDS-3600 electronic computer. It should be noted that the momentum equations (21) and
(22) do not depend on the energy equation and, hence, can be solved separately. The general method of solu-
tion can be described as follows, Since F"(0) is the only unknown quantity in the momentum equations (21)
and {22) an initial rough estimate of F"(0) is made for some prescribed value of Nvé and the momentum
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equation is then integrated with all the boundary conditions taken into account. On solving the momentum
equation we obtain a function F"(0), which is then used to solve the heat conduction equations (25)-(29).
These equations are linear, fortunately, and the solution is obtained in the following way.

We assume that ®; has the form

0y = b+ 8, (0) g, (49)
where h and g satisfy the equations
1
— W' + FH' =0
pr ot ) (50)
1
— I F ’ — 0
pr & T8 (51)
with boundary conditions
R(0) =1, A (0) = 0; (52)
g0 =0, g(=1 53)
We can now determine ®§(0) from the condition ®;(nys) = 0 in the form
9 (0) == — ) (54)
g (nvé)

A similar method is used to solve equations (26) and (27).

Conclusions and Discussion

The boundary-layer differential equations for forced-convection film boiling were solved for various
values of nys, Pr, ((on)y/(oW)y)'/? and 7.

The results of interest are given in Table 1 and are shown graphically in Figs. 2-9 for ny§ = 1-2,
v=1.3-4; (pu) =0.01, and Pr =1.0. Figure 2 shows that the presence of radiation increases the vapor
temperature. Hence, heat condition is increased on the vapor —liquid interface, but is reduced on the
wall surface.

Figure 3 shows the dimensionless temperature gradients on the wall and interface corresponding to
a zero-order perturbation. These gradients are identical when the radiation of the vapor is neglected. As
the figure shows, the difference between the temperature gradients on the wall and onthe interfaceis small
for thin vapor films (small Nys) and large for thick films (large 7y6). This can be attributed to the fact that
energy transfer by convection is not important for thin vapor films, but is very important for thick vapor
films.

Figure 6 shows function F(n,,s) for (op) =0.01 and 0.1; F(lys) is the dimensionless vaporization rate.
The figure shows that the vaporization rate increases as the film thickness increases. The figure alsoshows
that (pu) has an insignificant effect on F@y¢).

It should be noted that the curves of F(nys) for values of (pu) equal to 0.01 and 0.001 almost coincide.
Without radiation of the vapor,F(nys)/[~®)(lys)] is equal to the parameter cpAT /hngr. This quantity is
shown as a function of 7y in Fig. 6. This quantity increases with increase in the vapor film thickness.

Tables 1-3 and Figs.3-8 give all the information required for calculation of the heat transfer in
forced-convection film boiling. For any prescribed boiling conditions (Ty,, Tgq¢, liquid, U,) the physical
properties can be found from the tables, and the physical parameters [cpAT/ hfgPr, (pp), and so on] are
determined from Table 1 and Figs. 3-8; the dimensionless vapor film thickness 1y can be determined from
equation (35) by trial and error. A value of 75 is assumed and then the values of ®((ys), ©1(Nys), B4 (MNys),
I, and F(1y¢) are taken from Figs. 3, 5, 7, and 6, respectively. All these values are then substituted in
(35). If (35) is not satisfied another value of 7ys must be taken and the calculations repeated until the re-
quired value of nyg is found. Finally, the heat transfer results can be calculated from equation 44). It
should be noted that, as Fig. 8 shows, G(y) is always positive. Hence, the effect of the first-order term
in equation (41) must reduce the heat transfer relative in the heat transfer given by equation (45). Figure 9
shows [(y—l)/('y‘i. —1)] H(y, &) as a function of v for different values of .
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NOTATION

a) is the monochromatic absorption coefficient;
a is the absorption coefficient;

Cp is the specific heat at constant pressure;

Cy, Cy, Cy are the dimensionless parameters, equation (36);
e is the monochromatic emissivity of blackbody;
En(t) is the exponential integral;

F is the dimensionless vapor stream function, equation (19);
f is the dimensionless liquid stream function, equation (19);
G(y) ig the function given by equation 42);

hf is the heat of vaporization;

H(gv, &) is the function given by equation (48);

I is the integral given by equation (36);

k is the thermal conductivity;

L is the relative length;

m is the vaporization rate per unit area;

Nu is the convective Nusselt number;

Pr is the Prandtl number, Pr = ucp / ks

q is the local heat transfer rate per unit area;
Re is the Reynolds number;

t is the variable of integration;

T is the temperature;

AT = Tw—Tgat

u is the velocity component in x direction;

Ueo is the free-stream velocity;

v is the velocity component in y direction;

X is the coordinate measured along plate from leading edge;
y is the coordinate perpendicular to plate;

0o ig the thermal diffusivity;

v is the temperature ratio, Ty /Tgat;

13 is the thickness of vapor film;

€ is the emissivity;

= ax/\/ﬁa;

i is the similarity variable, equation (19);

Nys is the dimensionless thickness of vapor film;
@ is the dimensionless temperature;

A is the wavelength;

o is the absolute viscosity;

v is the kinematic viscosity;

[ is the density;

o is the Boltzmann constant;

T is the monochromatic optical thickness;

T is the optical thickness;

TS is the optical thickness of vapor film;

P is the stream function.

Subscripts

c conduction from wall to vapor;

L liquid;

l quantity determined at relative length;

r radiation;

sat saturated;

w wall;

0 on liquid—vapor interface;

A monochromatic property. Dash denotes differentiation with respect to 7.
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